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Detailed analysis of the fibre pull-out test 
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A detailed finite element analysis has been carried out to simulate the fibre pull-out test. The 
fibre-matrix interface was assumed to obey a Coulomb friction law. Special attention was 
focused on the effect of residual thermal stresses. An approximate analytical solution, rather 
similar to those in the literature, was derived. The results of the finite element analysis have 
been used to investigate the limitation and the validity of this analytical solution. The 
accuracy of various approximate analyses has also been discussed. 

1. Introduction 
The control of adhesion between the fibre-matrix in- 
terface in fibre-reinforced composites is of paramount 
importance in determining the usefulness of these ma- 
terials. If the interface cracks too easily, the elastic and 
compressive strength properties of the composite are 
compromised. On the other hand, if the interface is too 
strong, cracks may run easily through the composite 
without being deflected along the fibre interfaces, thus 
compromising the fracture toughness of the com- 
posite. 

A practical measure of the ability of the 
fibre-matrix interface to transfer load is the interface 
shear strength, z. The tests most often used to deter- 
mine z are the single-filament fragmentation test 
[1-3], the fibre push-out test [4-7] and the fibre 
pull-out test [8-123. In the fibre pull-out test, a single 
fibre is pulled out of a block of matrix material in 
which it is partially embedded. The fibre load and the 
relative displacement (the slip) at the fibre-matrix 
interface are measured. The test is often interpreted by 
assuming that the shear resistance at the fibre-matrix 
interface is characterized by a constant frictional shear 
stress, z. 

The mechanics of the fibre pull-out test have been 
considered by many investigators in various degrees of 
sophistication. Starting with the simple shear-lag ana- 
lysis of Cox [13], more elaborate approximate ana- 
lyses have been proposed to solve a wide variety of 
load-transfer problems involving bimaterial interfaces 
of which the fibre pull-out test is a special case 
[t4-16]. These approximate methods have been used 
extensively to obtain analytical solutions for the fibre 
pull-out test [17-30]. For example, Takaku and 
Arridge [19] introduced a modified shear-lag analysis 
that accounts approximately for the variation in the 
interface normal stress which accompanies Possion 
contraction of the pulled fibre. The effect of residual 
stresses on the pull-out test was investigated by 
Kerans and Parthasarathy [29]; they use a modified 
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shear-lag analysis which accounts for both the axial 
and radial residual stresses. Steif and Hoysan [24] 
have obtained a highly accurate, detailed numerical 
solution of a two-dimensional analogue of the pull-out 
problem. The residual stresses in their calculation, 
however, are simulated by a far-field compressive 
stress, so that the effect of axial residual stress is absent 
in their analysis. Although there are many analytical 
solutions for the pull-out tests [17-30], there have 
been very few attempts to verify the accuracy of these 
analytical solutions which are based mostly on modi- 
fied shear-lag models. Amongst the few numerical 
simulations of the pull-out test, for example [24], the 
thermal residual stresses are not explicitly included in 
the numerical computations. 

The purpose of the present study was to assess the 
accuracy of the approximate shear-lag analysis by 
comparing the analytical results with detailed finite 
element simulation of the pull-out test. Specifically, 
the accuracy of the analytical solution depends on the 
elastic properties of the fibre and the matrix, the fric- 
tion coefficient and the geometry of the specimen. Our 
goal was to illucidate the regime of validity of the 
shear-lag model using an accurate numerical method. 
The residual stress calculation has been explicitly in- 
cluded in the finite element model. The analytical 
formulation presented here is a modified shear-lag 
analysis with results similar to those derived by 
Kerans and Parthasarathy [29] and Li and Grubb 
[30]. The axial residual stress, which affects the fric- 
tion force acting on the interface, is included explicitly 
in the analysis. 

2. Analytical modelling of fibre pull-out 
The geometry of the fibre pull-out test is shown sche- 
matically in Fig. 1. The specimen is a circular cylinder 
with radius Rm and thickness t. A circular fibre with 
radius Rf is pulled out from the matrix with a uniform 
normal traction % = p applied at its end. To obtain 

5631 



Z 

t 
! 

Fi b r e ~  Matrix 

y---.- 

\ \  
\ \  

X \  I 

" "  i \ \  
\ N  

" "  ] \ \  
%'% 

N \  

\ \  
N \  

/ 

/ Slip zone / 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 

Figure 1 Schematic drawing of the fibre pull-out test. The bound- 
ary r = R~ is clamped. The circular fibre with radius Rr is pulled-out 
from the matrix with a uniform normal stress % = p. The rest of the 
boundary is traction free. 

an approximate analytical solution of this problem, 
we assume that t --, oo and R m - +  co. In other words, 
the matrix occupies the lower half space z < 0, The 
problem is axisymmetric about the fibre axis which is 
in the z direction. The fibre-matrix interface is located 
at r = Rf and z < 0. Traction-free boundary condition 
is imposed on the surface r > Rf and z = 0. Both the 
matrix and fibre are assumed to be linearly elastic and 
isotropic with Young's modulus and Poisson's ratio 
(E~, Vm) and ( E l ,  Vf), respectively. 

2.1. T h e r m a l  s t ress  p r o b l e m  
Residual stresses in the pull-out specimen are gener- 
ated due to the difference in the thermal coeff• of 
expansion of the matrix and the fibre denoted by am 
and ~f, respectively. In the analytical model, this stress 
state is estimated using the residual stresses ti~ and t~), 
induced by cooling an infinitely long fibre embedded 
in an infinite matrix by AT, where AT is the difference 
between the temperature of the stress-free state and 
the test temperature. The superscripts in t~ and 
tur denote the thermal stresses in the matrix and the 
fibre, respectively. Note that the residual stresses 

estimated using this solution are approximate, as tq 
they do not satisfy the traction-free boundary condi- 
tion on the surface z = 0. 

The non-trivial fibre-stress components of t~ are 
found to be [311 

t f ~ ~-f = C e m ( ~  m - -  ~ f ) A T  ( l a )  
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where 

I Ef(l + Vm)'] 
tf~ = t f 1 + Em(1 7- ~)f)J (lb) 

Ef(1 + vf) 
-~ (lc) 

Ef(1 + Vm) + Era(1 + Vf)(1 -- 2Vf) 

Equation 1 is expected to approximate the actual 
stress distribution in the fibre and the traction, t~, on 
the fibre-matrix interface with the exception of a small 
region near the traction-free surfaces z = 0. The valid- 
ity of this approximation will be examined by our 
finite element calculation in Section 3. 

2.2. Analysis of p u l l - o u t  
Following Meda et  al. [32], we assumed that slip 
along the fibre matrix interface is governed by 
Coulomb friction. At any given instant in the loading 
history, either sticking, slipping or opening can occur 
at a point along the interface. Conditions for these 
three states are as follows: 

(i) stick condition 

~R < 0, I~Rzl < . l ~ l ,  

(ii) slip condition 

d9 dh 
. . . . .  h = 0  
dt dt 

sgn = sgn(c&~), h = ti t  = 0 

(iii) open condition 

CrR=CYR==O h > O  

where 

g = lira [u~(Rr  + a, z)  - u~(R f  - ~, z)l 
~ 0 + 

h = lira [uR(Rr + e, z) - U R ( R  f - -  ~;, z ) l  
s ~ 0  + 

where ~t is the friction coefficient. 
The residual thermal stresses, due to the cooling of 

the specimen from the stress-free temperature to the 
test temperature, are given by Equation 1. This as- 
sumption implies that the fibre end at z = 0 is com- 
pressed by a residual stress of p = tr~ before any 
external load is applied. 

The following assumptions are made in the analyt- 
ical solution. 

(A) The fibre is modelled as a rod, i.e. the fibre stress 
is independent of r so that 

OG 
~-7- = 0 (2a) 

�9 = 0 (2b) 

(B) The effects of the shear stress CYR~ on the dis- 
placement in the radial direction, uR, is neglected in 
both the fiber and matrix, as in ~321. 



(C) We neglect the effects of the shear stress cy[~ on 
uf,, so that ufz is independent of r, which is consistent 
with the rod assumption A. 

For an axisymmetric problem with residual stresses, 
the stress-strain relations of the fibre in cylindrical 
coordinates are 

~ -  - -  E f  (3a )  

~U f n(yfz - -  Vfa(yfR - -  VfAV f 
- ( 3 b )  

~Z Ef  

e -  f has been used. where the notation Acy~--ch~ tq 
Note that the deformation is measured with respect to 
a specimen at the test temperature loaded at the end 
by a compressive stress p = tfz. This is because the 
residual stresses are obtained assuming that the fibre 
is infinite in the z direction. Equilibrium in the radial 
direction, i.e. 

5(YR (YR - -  (Y0 ~(YRz 
ar -+ - - r  + ~ = 0 (4) 

and assumption A implies that 

~ = 4 + r - -  (51 
8z 

Substituting Equation 5 into Equation 3a results in 

= r (6) 
Ef 

where we have ignored the term O~,/az in Equation 
3a according to assumption B. The displacement on 
the matrix side is derived following Meda et al. [32] by 
assuming that the matrix is an infinite slab deforming 
under plane strain condition, with a hole of radius Rf 
subjected to an internal pressure A ~  " 

(1 + Vm)ZXC~ 
U ~  - -  Rf at r = Rf (7) 

Em 

Note that assumption B is used in the derivation of 
Equation 7. Imposing radial displacement and trac- 
tion continuity at the interface, i.e. 

(u~ = u~ (8a) 

, at r = Rf  

lAcyfR = Ac~ (8b) 

Equations 6 and 7 imply that 

ac;~ - a G  k (9a) 

where 

Vf E m 
k = (9b) 

(1 @" Vm)E f -}- (1 - -  vf )En,  

Equation 9a gives the relationship between the normal 
stress acting on the fibre-matrix interface and the 
tensile stress on the fibre. 

A slip zone is developed as load is applied to the 
fibre end at z = 0. Inside the slip zone, the Coulomb 

friction law, for c~ < 0, is 

% z  = - ~o-~ (10) 

The equilibrium of a fibre element in the slip zone is 

~o'fz 20"Rz 
8z - R~ (11) 

Inserting Equations 9a and 10 in Equation 11 yields 
a first-order differential equation 

- (4  + k a r l 0  02)  
~z f 

This equation is integrated with the boundary condi- 
f tion % = p at z = 0, leading to 

- - ~ +  p - t f z +  e x P \ R f  z (13) 

where p is the applied tension on the fiber end and is 
related to the pull-out force F by 

F = nR~p (14) 

Equation 13 gives the axial fibre stress for a point 
inside the slip zone. The length of the slip zone, Ls, is 
defined by the condition that no slip can occur beyond 
Z ~ g  S. 

Following Shetty [5] and Kerans and Par- 
thasarathy [29], we require that 

Ac~f, = 0 at z = Ls (15) 

Equation 15 states that the axial fibre stress just out- 
side the slip zone is the residual axial stress. The error 
induced by this boundary condition is small, as long 
as the slip zone is large compared with the fibre radius. 
Ls is calculated using Equations 13 and 15 and is 
found to be 

Ls = ~ In t l  - ktrz + kp (16) 

r ufz(z, p) is obtained by The axial displacement uz = 
integrating Equation 3b subjected to the condition 
that ufz(z = Ls, p) = 0. The integration is carried out 
by inserting Equations 5, 9a and 13 into Equation 3b 
and neglecting the shear stress term ~C~rR~/SZ according 
to assumption C. This procedure allows us to deter- 
mine the axial displacement of the fibre at z = 0 

uf (O'p) - l - 2vfk 2R~ ff 1 (p - tf~) + ~ Ls (17) 

Note that uf~(0,p) is non-zero when the applied stress 
p vanishes because the fibre is initially compressed on 
its free surface by the residual stress t~ due to the 
infinite fibre approximation. 

The displacement uf, in our model is calculated with 
respect to the specimen in the residual stress state 
which is obtained using the infinite fibre approxima- 
tion, the consequence of this approximation is that the 
fibre is initialIy compressed on its free surface by the 
residual stress d_,. On the other hand, the actual experi- 
mental displacement Uf at z = 0 is measured with 
respect to a residual stress state which obeys the trac- 
tion-free boundary condition on the surface z = 0. 
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A good approximation of Uf is obtained by subtract- 
ing the displacement ufd0, 0) computed using Equa- 
tion 17. In other words, we subtract the displacement 
ufz(0, 0), due to the release of the excess residual stress 
near the fibre end, i.e. 

Uf = ufz(0, p) - ufd0, 0) (18) 

Using Equation 17, Ue is found to be 

1 -- 2vfk ( Rf t faTo" ~ 
Vf -- ~ P~K -~- -k J-'S} (1%) 

where 

ALs o = Ls(p) - Ls(0) = in t*R - kd~ + k p ]  

Introducing the dimensionless variables 

k 

(19b) 

/~ = ~ p (20a) 

btk Ef 1~ = Uf (20b) 
p R f  

lOcr ~- 1 -- k Zfz (20c) 
4 

where I t f l  = - t  f for a residual compressive stress, 
we obtain 

/g -- (1-- 2vfk) I ~ ( ~cr) 1 2 1 + In 1 - (21) 

The slip length, in terms of the normalized variables, is 
found to be 

O <<. z <~ Ls  

(23a) 

Re ln(,O~r - /~)  (22) 
Ls - 2txk 

Note that the normalized displacement, vT, given by 
Equation 21 is a non-linear function of the normalized 
load,/~, and is independent of g. This means that the 
measured displacement, Uf, is inversely proportional 
to g. 

The interracial shear stress, c&z, inside the slip zone 
can be obtained from Equations 11 and 13; it is found 
to be 

( 2 # k z ~  
~R~ ---- . l  tlc[ (P~< --  P) exp \ Rf / 

It is convenient to introduce a normalised interracial 
shear stress, 

~R~ (23b) 

The axial fibre stress, (yf~, within the slip zone can be 
expressed in terms of a normalized fibre stress, #, as 

f 141(e/k) (23c) (Yz 

= (5o~ - ~) (23d) 

where 
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Equation 21 implies that when the normalized 
tension, /5, reaches the "critical" value, ffor (i.e. 
Per = tfz -- (tfR/k)), the axial displacement becomes un- 
bounded; this corresponds to the situation when the 
applied load is such that the radial stress due to 
Poisson's contraction exactly cancels the radial nor- 
mal residual stress [29]. In other words, there is no 
frictional resistance to the external load. This corres- 
ponds to the propagation of a mode I crack and our 
analysis is no longer valid: a similar transition of the 
crack propagation from mode II to mode I has been 
found [27] and the existence of a critical load has also 
been observed [26]. Note that the applied tension, p, is 
normalized with respect to I t f ] /k ,  which is the stress 
needed to cancel the radial normal stress when no 
axial residual stress is present. Finally, we note that 
the normalized critical load/5~r = 1 for the case when 
the axial residual stress is set to zero. 

3. FEM analysis 
The finite element analysis of the pull-out test is 
carried out using the code ABAQUS, developed by 
Hibbitt, Karlsson and Sorensen Inc. The geometry is 
shown in Fig. 1. The height, t, of the cylinder ranges 
between 10 and 100 fibre radii, Rf. The matrix radius, 
Rm, is chosen to be 60Rf to simulate the effect of an 
infinite matrix. The domain of interest is modelled by 
means of 500 biquadratic axisymmetric elements 
(8 nodes) and 20 interface elements (3 nodes). 

Coulomb friction is used in the interface elements: if 
the normal stress acting on the two sides of the ele- 
ment is tensile, the two sides separate so that there is 
no normal and shear stress transfer between fibre and 
matrix. When the normal stress is compressive, the 
displacement across the interface is continuous up to 
the shear limit (the friction coefficient times the nor- 
mal stress) with slip occurring between the interfaces 
at higher values. 

The FEM analysis is carried out in two steps. In 
step one the detailed thermal stress distribution in the 
specimen due to a given temperature change is cal- 
culated. In the second step, the fibre is pulled out by 
the applied traction load. The fibre and the matrix in 
this step are subjected to the residual stresses obtained 
in step 1. 

Slip at the matrix-fibre interface is allowed in both 
the initial thermal loading stage as well as in the 
applied traction loading stage. 

The boundary conditions are as follows: in the re- 
sidual stress calculation the axial displacement of the 
fibre and matrix nodes on the middle cross-section 
z = t /2 of the specimen are fixed because of symmetry; 
the rest of the specimen boundary is traction free. In 
the pull-out calculation, the matrix nodes on the 
boundary, r = Rm, are fixed to simulate a clamped 
condition for the matrix. The matrix and fibre nodes 
at the bottom of the specimen, z = t, are left traction 
free. The matrix nodes on z = 0 are traction free, 
whereas a uniform displacement, Uf, is applied to the 
fibre nodes. 

To assess the accuracy of our FEM calculations, we 
applied our FEM model to analyse the fibre push-out 
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Figure 2 Comparison of (0) our FEM results for the case of the 
fibre push-out test with (--) the numerical results of Hoysan and 
Steif [24] for the case of El~Era = 3.54, g = 0.3, vr = Vm = 0.3. As in 
[24], the residual radial stress at the interface is modelled by the 
application of a constant pressure on the fibre and matrix interface 
elements. 

test, which was carried out by Meda et al. [32]. This is 
done by reversing the loading on the fibre. Because 
Meda et al. [32], simulated the effect of thermal stress 
by the application of a constant pressure so that the 
axial residual stress is ignored, we did not carry out 
the initial thermal loading calculation but instead 
modelled the residual radial stress at the interface by 
the application of a constant pressure on the fibre and 
matrix interface elements. The axial residual stress is 
set equal to zero. The normalized displacement versus 
normalized load curve for the case of Ef/Em = 3.54, 

= 0.3, vf = Vm = 0.3 is shown in Fig. 2 where the 
curve matches very well with the FEM analysis of 
Meda et al. [32]. The normalization used in this figure 
is identical to that reported elsewhere [32], and not 
that of Equation 20. 

4. Numerical results 
4.1. Thermal  stress simulat ion 
FEM thermal stress calculations were carried out to 
obtain the dependence of the residual stress distribu- 
tion on the dimensionless parameters t/Rf, Em/E f 
and ~t. To assess the accuracy of Equation 1, we 
normalized the calculated thermal stresses by the ap- 
proximate thermal stress solution given by Equation 1 

s 
eR t[~ (24a) 

(3" z 
#z = ~-  (24b) 

O'Rz 
e R z -  t[~ (24c) 

where t[~ and tfz are given in Equation 1. Perfect agree- 
ment of the finite element results with the infinite fibre 

approximation given by Equation 1 would imply that 
(YR ~-- (~Yz ~-  1 and ~Rz = 0. 

In Figs 3-5 the normalized thermal stresses defined 
in the equations above are plotted as a function of the 
normalized axial position z/t. These calculations are 
carried out using different values of t/Rf, Era~El and g. 
The fixed parameters in these simulations are given by 

Ef = 2.3 x 1011 Pa (25a) 

vr = Vm = 0.3 (25b) 

A~AT = 8 x 10 -4 (25c) 

As expected, the results of Figs 3-5 indicate that the 
infinite fibre approximation given by Equation 1 
breaks down near the fibre ends, where slip of the 
fibre-matrix interface occurs due to thermal residual 
stresses. The size of these "thermal slip zones" and 
hence the accuracy of the infinite fibre assumption, 
depends on the parameters t/Rf, Era~El and ~t. Our 
simulation shows that the accuracy of the infinite fibre 
approximation improves as the parameters t/Rf, 
Em/E f and p increase. Physically, this is easy to see, 
because a higher g (as well as a higher radial stress) 
can allow the same amount of shear force to be trans- 
mitted across a smaller "thermal slip zone". We found 
that, for small friction coefficients (g ~ 0.1), a large 
thickness ratio t/Rf >~ 100 is needed to ensure the 
validity of the approximation of Equation 1. 

4.2. Pull-out test s i m u l a t i o n  
Unless specified otherwise, simulations of the pull-out 
test were obtained using t/Rf = 100 to ensure the 
validity of the infinite fibre approximation for small 
friction coefficients. Also, all the finite element simula- 
tions in this section were carried out using the fixed set 
of parameters given by Equation 25a-c. Typically, 
simulations are performed to study the dependence of 
the pull-out test on the parameters Em/Ef, ~t, and the 
normalized displacement, ft. 

The normalized displacement versus normalized 
load curve for the case of Em/Ef = 0.1 and g = 0.5 is 
shown in Fig. 6. The curve, consisting of filled dots, is 
obtained using our FEM model. The curve consisting 
of open dots is obtained using the simplified FEM 
model where the effect of residual stress is replaced 
by a constant pressure applied on the interface. The 
solid line is obtained using Equation 21 with t f and 

given by Equation 1. The dashed line is obtained 
using Equation 21 with t f given by Equation 1 and 
dz = 0, which is the analytical solution for the case 
where the axial residual stress is neglected. This cor- 
responds to the case of a constant pressure applied to 
the interface. 

Fig. 6 shows that the normalized displacement is 
not zero at zero normalized load. Indeed, the analyti- 
cal model, Equation 21, predicts that 

' ~  (26) 

where we have used L'Hopital 's rule to evaluate 
the limit as p ~ 0 in Equation 21. Physically, the 
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non-zero normalized displacement at zero applied 
load is caused by frictional slip induced by the axial 
thermal residual stress. Thus, the slope du/dp  of the 
actual load-displacement curve is non-zero at zero 
load. On the other hand, Equation 26 predicts that 
~io = 0 when the axial residual stress in the fibre is 
neglected because 15~ = 1 in this case. 

The results in Fig. 6 show that the analytical model 
agrees very well with the FEM. They also confirm the 
�9 necessity of including the residual axial stress in the 
analysis, as pointed out elsewhere [29]. The curves 
given by the analytical model approach the nor- 

f (t~/k)), when the malized critical load/5~, (or Por = t= -- 
displacement becomes unbounded and the fibre slips 
with no friction. Note that the normalized critical load 
ff~, = 1, for the case when the axial residual stress is set 
to zero ( - - -  in Fig. 6). In the FEM analysis, the slip 
zone eventually reaches the other end of the fibre (i.e. 
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Figure 3 Compar i son  of (a) the thermal residual interface normal  
stress, (b) axial stress and (c) interface shear stress, which are ob- 
tained using F E M  with those obtained using the infinite fibre 
approximation.  This compar ison  is accomplished by using the nor- 
malized variables aR = a~/t[~, Oz = az/t~, aR~ = 6Rjt~. Perfect 
agreement of the finite element results with the infinite fibre approx- 
imation would imply that 6R = 6= = 1 and 6a= = 0. These simula- 
tions were carried out  using three different values of t/Rf = (0) 100, 
(C]) 60 and (~)  10 with Em/Ef = 0.1, g = 0.5. 

Ls = t). The friction force on the interface does not 
vanish when Ls = t and the asymptotic value of the 
applied load is found to be slightly less than that 
predicted by Pot. This is not surprising because the 
analytical model is derived assuming that t = o% 
whereas in the finite element model, a finite thickness 
is used. Our model gives Per = tf~ - (trk/k), which is in 
good agreement with the results of the finite element 
analysis. It should be noted that Kerans and 
Parthasarathy [29] give po~ in terms of a misfit strain. 
If we assume their misfit is due entirely to thermal 
stresses, then it can be expressed in terms of the resid- 
ual stresses and is identical to our expression here. 
Also, one can show that, in the formulation of Li and 
Grubb [30], Pcr is identical to our expression if we set 
their debond length la = oo in their Equation 38 and if 
their misfit strain is expressed in terms of residual 
stresses. 

The effect of the residual axial stress on the critical 
load is shown in Figs 7 and 8 for three different values 
of vf and Em/Ee. These curves are obtained using the 
analytical model (Equation 21). The normalized 
critical load (i.e. the asymptotic value of the nor- 
malized load) is always 20%-30% lower than the 
unit value predicted by Equation 21 if the axial resid- 
ual stress is set to be identically zero. Thus, the as- 
sumption of no axial residual stress overestimates 
the normalized critical load. It should be noted that, 
when the residual stress distribution differs signifi- 
cantly from the infinite fibre approximation (e.g. for 
t /Rf -- 10), the finite element results given in Fig. 3 
show that the axial residual stress is usually 
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much smaller than that predicted by Equation 1. We 
have also carried out finite element calculation for the 
case of URf = 10 with Em/E f = 1 and g = 0.1. Our  
simulation shows that the thermal slip zone exceeds 
the thickness t. In this case, the analytical solution 
deviates significantly from the finite element result. 

Figs 7 and 8 show the influence of vf and Em/Ef  on 
the pull-out test. The curves in these figures are gener- 
ated using the analytical model Equation 21. The 
critical load decreases as the Poisson's ratio of the 
fibre and Era~El increase. The results of the analytical 
model for 0.1 ~< Em/Ef  ~ 1 are insensitive to vari- 
ations of the matrix Poisson's coefficient, Vm, and 
therefore are not shown here. 

Next, we investigate the dependence of the pull-out 
test on the modulus ratio, Era~El, and the friction 
coefficient, g. Fig. 9 shows the results of the finite 
element analysis for Em/E f = 0.3 and g = 0.1 and 0.25. 
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Figure 4 Comparison of (a) the thermal residual interface normal 
stress, (b) axial stress and (c) interface shear stress, obtained using 
FEM with those obtained using the infinite fibre approximation. 
This comparison is accomplished by using the normalized variables 
6-R = (~R/t~, 6z = 6z/t~, 6R~ = (~R~/t~. Perfect agreement of the finite 
element results with the infinite fibre approximation would imply 
that (& = 6z = 1 and ~ = 0. The simulations were carried out 
using three different values of friction coefficients Ft = (~) 0.1, ([]) 0.5 
and (�9 3.0 with Era~El = 0.1, t/Rf = 60. 

Results of the analytical model are shown in solid line. 
The results of the finite element analysis for the case of 
Em/E f = 1.0 with g = 0.1 and 0.25 are shown in 
Fig. 10. As in Fig. 9, the analytical solutions are also 
shown in solid line. Equation 21 implies that plots of 
normalized load versus normalized displacement 
should be independent of the friction coefficient, g, this 
is confirmed by our F E M  simulations in Figs 9 and 10. 
The agreement between the predictions of the analyti- 
cal model and the finite element results is very good: 
within 5 % - 7 %  for g = 0.25 and within 2 % - 3 %  for 
~t = 0.1. 

The finite element results and the analytical solu- 
tion for the interfacial shear (Equation 23a) inside the 
slip zone is shown in Fig. 11 for g = 0.1 and 0.5. The 
results for the axial fibre stress inside the slip zone for 

= 0.1 and 0.5 are given in Fig. 12. These results are 
obtained using the same applied tension. They indi- 
cate that the agreement between the finite element and 
the approximate shear-lag analysis improves as the 
friction coefficient is reduced. One may expect that the 
agreement between the finite element and the approx- 
imate shear-lag analysis will depend only on the 
length of the slip zone. To check this hypothesis, we 
reduce the loading for the case of g = 0.1 so that the 
slip zone are of the same size as that of g = 0.5. The 
interracial shear stress and the axial fibre stress ob- 
tained using this procedure are also shown in Figs 11 
and 12. (The analytical solutions are given by the 
dotted lines and the finite element results by squares). 
Our results indicate that the lower the friction coeffic- 
ient, the closer is the agreement between the finite 
element and the approximate shear-lag analysis even if 
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the slip zones are of the same size. It should be noted 
that the agreement between the approximate shear-lag 
analysis and the finite element results for the load 
versus displacement curve is much less sensitive to the 
friction coefficient, as pointed out above. 

5. Discussion and conclusion 
Our finite element simulation shows that there is ex- 
cellent agreement between our approximated analyt- 
ical solution, which is based on a shear-lag analysis. 
For  example, the displacement versus load relation 
given by Equation 21, as well as the critical load for 
complete fibre pull-out, compares very well with the 
finite element results. The analytical model is accurate 
for p in the range 0.5 >~ ~t ~> 0.1, although it could be 
accurate for a larger set of p. The dependence of the 
pull-out force on the elastic modulus of the matrix and 
fibre is also well approximated by the analytical 
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21 with t f given by Equa t i on  1 and  t f = 0, which is the analyt ical  
solution.  This  cor responds  to the case of a cons tan t  pressure  applied 
to the interface for the case where  the axial residual stress is 
neglected. 

model. The interracial shear stress and the fibre stress 
is also accurately predicted by the shear-lag model 
provided that g is small. Thus the shear  lag model 
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captures accurately all the relevant features of the 
pull-out test provided that the following conditions 
are satisfied. 

1. The accuracy of the analytical solution depends 
on the ratio t/Rf. The thermal residual stresses are 
accurately predicted by the infinite fibre approxi- 
mation for friction coefficient tx ~> 0.1 as long as 
t /R f  ~ 100. When t / e f  is sufficiently small so that 
the thermal slip zone occupies a significant portion of 
the fibre-matrix interface, the agreement between the 
finite element simulation and the analytical solution is 
very poor. 

2. The effect of residual axial stress should be in- 
cluded in models of fibre pull-out. Our finite element 
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Figure 9 Compar i son  of the normalized displacement versus nor- 
malized load curve obtained by finite element results with those 
obtained by the analytical model (Equat ion 21) for two different 
bt with Em/E f = 0.3. (O) tt = 0.1, (O) bt = 0.25. 
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Figure 10 Compar i son  of the normalized displacement versus nor- 
malized load curve obtained by finite element results with those 
obtained by the analytical model  (Equat ion 21) for two different 
tx with Em/Er = 1. (0 )  g = 0.1, (O) ~L = 0.25. 

result shows that the interface can slip before load 
application. This leads to non-zero fibre displacement 
at zero load. Furthermore, the critical load for com- 
plete pull-out of the fibre is overestimated by about 
30% if the axial residual stress is neglected in the 
modelling. 

3. The fibre stress and the interfacial stress inside 
the slip zone is accurately predicted by the shear-tag 
model. As expected, the smaller the friction coefficient, 
the better is the shear-lag approximation. The dis- 
placement versus load relation is much less sensitive to 
the friction coefficient. Our  finite element results show 
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Figure 11 The normalized interface shear stress ~-~ aR=/ixlt[~l in- 
side the slip zone for two different friction coefficients ~t = 0.1 and 
0.5 with Em/Ef = 1. The finite element results for: (O) g = 0.1, 
/5 = 0.63, (�9 g = 0.5,/5 = 0,63, and (11) ix = 0.1,/5 = 0.20. Predic- 
tions of the analytical model: (--) g = 0.1,/5 = 0.63, ( - - )  IX = 0.5, 
/5 = 0.63, and (..-) g = 0.1, ,5 = 0.20; (/~) indicates the normalized 
load used in the simulation. 

expressions are practically identical to ours provided 
that their misfit strain is expressed in terms of the 
thermal residual stresses. We note that Li and Grubb 
[30] did not give a displacement versus load relation, 
as they were mainly interested in measuring the inter- 
facial stress using Raman spectrometry. Thus, the ana- 
lytical analysis of these authors (and perhaps others) is 
also an accurate description of the pull-out test. 

In this work the fibre-matrix interface was 
modelled by Coulomb friction. We have not con- 
sidered interface models that described debonding ac- 
companied by frictional slip. Approximate analytical 
solution of the pull-out test using these interface mod- 
els can be found elsewhere E26, 27]. 
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tion. 

that the fibre displacement is inversely proportional to 
the friction coefficient. 

Although the procedure of our analytical solution 
differs somewhat from that of Kerans and Par- 
thasarathy [29] and Li and Grubb [30], many of their 
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